Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

???searchArticles.header???



Filter by Date: Year(4-digits)   to 

???application.search.numResults???


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

???manualAddArticle.find??? ???manualAddArticle.link.add???


???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???

( ???images.icon???)
Search Results

Fibropellins, products of an EGF repeat-containing gene, form a unique extracellular matrix structure that surrounds the sea urchin embryo., Bisgrove BW, Andrews ME, Raff RA., Dev Biol. July 1, 1991; 146 (1): 89-99.


Fertilization-induced changes in the vitelline envelope of echinoderm and amphibian eggs: self-assembly of an extracellular matrix., Larabell C, Chandler DE., J Electron Microsc Tech. March 1, 1991; 17 (3): 294-318.


Fractionation of jelly substance of the sea urchin egg and biological activities to induce acrosome reaction and agglutination of spermatozoa., Mikami-Takei K, Kosakai M, Isemura M, Suyemitsu T, Ishihara K, Schmid K., Exp Cell Res. January 1, 1991; 192 (1): 82-6.


Fertilization Membrane Formation in Sea Urchin Eggs Induced by Drugs Known to Cause Ca2+ Release from Isolated Sarcoplasmic Reticulum: (sea urchin egg/fertilization membrane/ryanodine/micronazole/procaine)., Fujiwara A, Taguchi K, Yasumasu I., Dev Growth Differ. June 1, 1990; 32 (3): 303-314.


Fragmentation of isoaspartyl peptides and proteins by carboxypeptidase Y: release of isoaspartyl dipeptides as a result of internal and external cleavage., Johnson BA, Aswad DW., Biochemistry. May 8, 1990; 29 (18): 4373-80.


Fertilization envelope assembly in sea urchin eggs inseminated in chloride-deficient sea water: II. Biochemical effects., Green JD, Glas PS, Cheng SD, Lynn JW., Mol Reprod Dev. February 1, 1990; 25 (2): 177-85.


First messengers at fertilization., Jaffe LA., J Reprod Fertil Suppl. January 1, 1990; 42 107-16.


Facts and hypotheses of calcium regulation of MPF activity during meiotic maturation of starfish oocytes., Dorée M, Cavadore JC, Picard A., J Reprod Fertil Suppl. January 1, 1990; 42 135-40.


Fatty chain composition of phospholipids in sea urchin spermatozoa., Mita M, Ueta N., Comp Biochem Physiol B. January 1, 1989; 92 (2): 319-22.


Fluctuation in the intracellular concentration of Na+ and Cl- but not of K+ or Mg2+ at mitosis of the first cell cycle in fertilized sea urchin eggs., Cameron IL, Hunter KE, Smith NK., Cell Biol Int Rep. November 1, 1988; 12 (11): 951-8.


Fine structure of oocyte maturation in a crinoid echinoderm, Oxycomanthus japonicus: A time-lapse study by serial biopsy., Holland ND., J Morphol. November 1, 1988; 198 (2): 205-217.


Fertilization envelope assembly in sea urchin eggs inseminated in Cl- deficient sea water: I. Morphological effects., Lynn JW, Goddard RL, Glas P, Green JD., Gamete Res. October 1, 1988; 21 (2): 135-49.


Fertilization cone formation in starfish oocytes: the role of the egg cortex actin microfilaments in sperm incorporation., Kyozuka K, Osanai K., Gamete Res. July 1, 1988; 20 (3): 275-85.


Filamentous actin organization in the unfertilized sea urchin egg cortex., Henson JH, Begg DA., Dev Biol. June 1, 1988; 127 (2): 338-48.


Functional analysis of the sea urchin U7 small nuclear RNA., Gilmartin GM, Schaufele F, Schaffner G, Birnstiel ML., Mol Cell Biol. March 1, 1988; 8 (3): 1076-84.


Flagellar quiescence and transience of inactivation induced by rapid pH drop., Sato F, Mogami Y, Baba SA., Cell Motil Cytoskeleton. January 1, 1988; 10 (3): 374-9.


Functional aspects of the microtubule system in chromatophores of the sea urchin Centrostephanus longispinus., Lehmann M, Weber W., Prog Clin Biol Res. January 1, 1988; 256 453-9.


Fine structural study of the acrosome formation in the starfish Marthasterias glacialis (Echinodermata, Asteroidea)., Sousa M, Azevedo C., Tissue Cell. January 1, 1988; 20 (4): 621-8.


Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions., Schroeder TE., Dev Biol. November 1, 1987; 124 (1): 9-22.


Fertilization triggers unmasking of maternal mRNAs in sea urchin eggs., Grainger JL, Winkler MM., Mol Cell Biol. November 1, 1987; 7 (11): 3947-54.


Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. I. The structure and behavior of centrosomes before fusion of the pronuclei., Paweletz N, Mazia D, Finze EM., Eur J Cell Biol. October 1, 1987; 44 (2): 195-204.


Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. II. Bipolarization before the first mitosis., Paweletz N, Mazia D, Finze EM., Eur J Cell Biol. October 1, 1987; 44 (2): 205-13.


Flagellar gyration and midpiece rotation during extension of the acrosomal process of Thyone sperm: how and why this occurs., Tilney LG, Inoué S., J Cell Biol. March 1, 1987; 104 (3): 407-15.


Further characterization of a speract receptor on sea urchin spermatozoa., Dangott LJ, Garbers DL., Ann N Y Acad Sci. January 1, 1987; 513 274-85.


Functional characterization of toposomes from sea urchin blastula embryos by a morphogenetic cell aggregation assay., Matranga V, Kuwasaki B, Noll H., EMBO J. December 1, 1986; 5 (12): 3125-32.


Fine Structures of Oocytes and Accessory Cells of the Ovary in the Starfish Patiria (Asterina) pectinifera at Different Stages of Oogenesis and After 1-Methyladenine-Induced Maturation: (starfish oogenesis/oocyte maturation/electron microscopy/cytoplasm)., Aisenshtadt TB, Vassetzky SG., Dev Growth Differ. September 1, 1986; 28 (5): 449-460.


Fine structure of the doliolaria larva of the feather star Florometra serratissima (Echinodermata: Crinoidea), with special emphasis on the nervous system., Chia FS, Burke RD, Koss R, Mladenov PV, Rumrill SS., J Morphol. August 1, 1986; 189 (2): 99-120.


Future directions for studies of mechanisms for generating flagellar bending waves., Brokaw CJ., J Cell Sci Suppl. January 1, 1986; 4 103-13.


Fertilization, development and spicule formation in sea urchins under conditions of constant reorientation relative to the gravitation axis., Schatten G, Stroud C, Simerly C, Schatten H., Physiologist. December 1, 1985; 28 (6 Suppl): S89-90.


From sea urchins to chromosomes and cancer., Scoggin CH., Am Rev Respir Dis. November 1, 1985; 132 (5): 935-6.


Fentanyl does not inhibit fertilization or early development of sea urchin eggs., Bruce DL, Hinkley R, Norman PF., Anesth Analg. May 1, 1985; 64 (5): 498-500.


Fluctuation of the Ca-sequestering activity of permeabilized sea urchin embryos during the cell cycle., Suprynowicz FA, Mazia D., Proc Natl Acad Sci U S A. April 1, 1985; 82 (8): 2389-93.


Fatty acid metabolism and cell proliferation. VII. Antioxidant effects of tocopherols and their quinones., Lindsey JA, Zhang HF, Kaseki H, Morisaki N, Sato T, Cornwell DG., Lipids. March 1, 1985; 20 (3): 151-7.


Fertilization stimulates lipid peroxidation in the sea urchin egg., Perry G, Epel D., Dev Biol. January 1, 1985; 107 (1): 58-65.


Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kd protein, axokinin., Tash JS, Kakar SS, Means AR., Cell. September 1, 1984; 38 (2): 551-9.


Fertilization increases the polyphosphoinositide content of sea urchin eggs., Turner PR, Sheetz MP, Jaffe LA., Nature. August 1, 1984; 310 (5976): 414-5.


Fertilization results in increased tyrosine phosphorylation of egg proteins., Ribot HD, Eisenman EA, Kinsey WH., J Biol Chem. April 25, 1984; 259 (8): 5333-8.


Fatty acylation of proteins during development of sea urchin embryos., Bolanowski MA, Earles BJ, Lennarz WJ., J Biol Chem. April 25, 1984; 259 (8): 4934-40.


Formation of the 3' end of histone mRNA by post-transcriptional processing., Krieg PA, Melton DA., Nature. March 1, 1984; 308 (5955): 203-6.


Factors affecting the spatial distributions of thinly encrusting sponges from temperate waters., Ayling AL., Oecologia. December 1, 1983; 60 (3): 412-418.


FEEDING STRUCTURES, BEHAVIOR, AND MICROHABITAT OF ECHINOCYAMUS PUSILLUS (ECHINOIDEA: CLYPEASTEROIDA)., Telford M, Harold AS, Mooi R., Biol Bull. December 1, 1983; 165 (3): 745-757.


Filipin/sterol complexes in fertilized and unfertilized sea urchin egg membranes., Carron CP, Longo FJ., Dev Biol. October 1, 1983; 99 (2): 482-8.


Fibronectin and laminin in the extracellular matrix and basement membrane of sea urchin embryos., Spiegel E, Burger MM, Spiegel M., Exp Cell Res. March 1, 1983; 144 (1): 47-55.


Fertilization and early development of sea urchins., Schatten G, Schatten H., Scan Electron Microsc. January 1, 1983; (Pt 3): 1403-13.


Fusion of Spermatozoa with Embryonic Cells and Somatic Cells in the Sea Urchin: (fertilization/re-fertilization/acrosome reaction/sea urchin)., Kato KH, Iwaikawa Y, Sugiyama M., Dev Growth Differ. January 1, 1983; 25 (6): 571-583.


Further studies on dividing sea urchin eggs exposed to the volatile anesthetic halothane., Hinkley RE, Webster DR, Rubin RW., Exp Cell Res. October 1, 1982; 141 (2): 492-7.


Fertilization acid of sea urchin eggs: evidence that it is H+, not CO2., Holland LZ, Gould-Somero M., Dev Biol. August 1, 1982; 92 (2): 549-52.


Flagellum formation and centriolar behavior during spermatogenesis of the sea urchin, Hemicentrotus pulcherrimus., Kato KH, Ishikawa M., Acta Embryol Morphol Exp. July 1, 1982; 3 (1): 49-66.


Fertilization and larval development in sea urchins following exposure of gametes and embryos to cadmium., Pagano G, Esposito A, Giordano GG., Arch Environ Contam Toxicol. January 1, 1982; 11 (1): 47-55.


Factors determining the distribution of the sea pansy, Renilla kollikeri, in a subtidal sand-bottom habitat., Kastendiek J., Oecologia. January 1, 1982; 52 (3): 340-347.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???